
10 deploys per day
Dev & ops cooperation at Flickr

John Allspaw & Paul Hammond
Velocity 2009

3 billion photos

http://flickr.com/photos/jimmyroq/415506736/

40,000 photos per second

http://flickr.com/photos/jimmyroq/415506736/
http://flickr.com/photos/jimmyroq/415506736/

Dev versus Ops

“It’s not my machines,
it’s your code!”

“It’s not my code,
it’s your machines!”

Spock Scotty
Little bit weird

Sits closer to the boss
Thinks too hard

Pulls levers & turns knobs
Easily excited
Yells a lot in emergencies

Says “No” all the time
Afraid that new fangled things will break the site

Fingerpointy

They say “NO” all the time

Because no one tells
them anything

Because
They say “NO” all the time

Because the site breaks
unexpectedly

Ops stereotype

Traditional thinking

Dev’s job is to add new features
Ops’ job is to keep the site stable and fast

http://www.flickr.com/photos/stewart/461099066/

Ops’ job is NOT to keep the site stable and fast

Ops’ job is to enable the business
(this is dev’s job too)

The business requires change

But change is the root cause of most outages!

Discourage change in the interests of stability
or

Allow change to happen as often as it needs to

Lowering risk of change
through tools and culture

♥Dev and Ops

Ops who think like devs
Devs who think like ops

“But that’s me!”

You can always think more like them

Tools

1. Automated infrastructure
If there is only one thing you do…

1. Automated infrastructure
If there is only one thing you do…

Chef

Puppet

CFengine

FAI

System Imager
Cobbler

BCfg2

☁Role &
configuration
management

OS imaging

2. Shared version control

Everyone knows where to look
http://www.flickr.com/photos/thunderchild5/1330744559/

http://www.flickr.com/photos/stewart/461099066/
http://www.flickr.com/photos/stewart/461099066/

3. One step build

3. One step build
and deploy

[2009-06-22 16:03:57] [harmes] site deployed (changes...)

Who? When? What?

Small frequent changes
http://www.flickr.com/photos/mauren/2429240906/

http://www.flickr.com/photos/stewart/461099066/
http://www.flickr.com/photos/stewart/461099066/

4. Feature flags
(aka branching in code)

1.0 1.1 1.2

1.0.1

1.1.1

1.0.2

Desktop software

r2301 r2302

Web software

r2306

Always ship trunk

http://www.flickr.com/photos/8720628@N04/2188922076/

http://www.flickr.com/photos/stewart/461099066/
http://www.flickr.com/photos/stewart/461099066/

Everyone knows exactly where to look
http://www.flickr.com/photos/thunderchild5/1330744559/

http://www.flickr.com/photos/stewart/461099066/
http://www.flickr.com/photos/stewart/461099066/

#php
if ($cfg['enable_feature_video']){
 …
}

{* smarty *}
{if $cfg.enable_feature_beehive}
 …
{/if}

Feature flags

Private betas

http://www.flickr.com/photos/healthserviceglasses/3522809727/

http://www.flickr.com/photos/healthserviceglasses/3522809727/
http://www.flickr.com/photos/healthserviceglasses/3522809727/

Bucket testing

http://www.flickr.com/photos/davidw/2063575447/

http://www.flickr.com/photos/healthserviceglasses/3522809727/
http://www.flickr.com/photos/healthserviceglasses/3522809727/

Dark launches

http://www.flickr.com/photos/jking89/3031204314/

http://www.flickr.com/photos/healthserviceglasses/3522809727/
http://www.flickr.com/photos/healthserviceglasses/3522809727/

Free
contingency
switches

http://www.flickr.com/photos/flattop341/260207875/

http://www.flickr.com/photos/flattop341/260207875/
http://www.flickr.com/photos/flattop341/260207875/

5. Shared metrics

Application level metrics

Application level metrics

Adaptive feedback loops

App System Metrics

RU ok?

maybe?

6. IRC and IM robots

Dev, Ops, and Robots
Having a conversation

IRC

search
engine

alerts
monitors

deploy
logs

build
logs

Culture

1. Respect
If there is only one thing you do…

Don’t
stereotype
(not all developers are lazy)

http://www.flickr.com/photos/aaronjacobs/64368770/

http://flickr.com/photos/jimmyroq/415506736/
http://flickr.com/photos/jimmyroq/415506736/

Respect other people’s expertise,
opinions and responsibilities

http://www.flickr.com/photos/chrisdag/2286198568/

http://flickr.com/photos/jimmyroq/415506736/
http://flickr.com/photos/jimmyroq/415506736/

Don’t just say “No”

http://www.flickr.com/photos/jwheare/2580631103/

http://www.flickr.com/photos/flattop341/260207875/
http://www.flickr.com/photos/flattop341/260207875/

Don’t hide things

http://www.flickr.com/photos/alancleaver/2661424637/

http://www.flickr.com/photos/flattop341/260207875/
http://www.flickr.com/photos/flattop341/260207875/

Developers: Talk to ops about the impact of your code:

• what metrics will change, and how?
• what are the risks?
• what are the signs that something is going wrong?
• what are the contingencies?

This means you need to work this out before talking to ops

2. Trust

Ops needs to trust dev to involve
them on feature discussions

Dev needs to trust ops to discuss
infrastructure changes

Everyone needs to trust that everyone else
is doing their best for the business

http://www.flickr.com/photos/85128884@N00/2650981813/

http://www.flickr.com/photos/healthserviceglasses/3522809727/
http://www.flickr.com/photos/healthserviceglasses/3522809727/

Shared runbooks & escalation plans

http://www.flickr.com/photos/flattop341/224176602/

http://www.flickr.com/photos/flattop341/260207875/
http://www.flickr.com/photos/flattop341/260207875/

Provide knobs and levers

http://www.flickr.com/photos/telstar/2861103147/

http://www.flickr.com/photos/flattop341/260207875/
http://www.flickr.com/photos/flattop341/260207875/

Ops: Be transparent,
give devs access to systems

http://www.flickr.com/photos/williamhook/3468484351/

http://flickr.com/photos/jimmyroq/415506736/
http://flickr.com/photos/jimmyroq/415506736/

3. Healthy attitude
about failure

Failure will happen

http://www.flickr.com/photos/pinksherbet/447190603/

http://www.flickr.com/photos/flattop341/260207875/
http://www.flickr.com/photos/flattop341/260207875/

If you think you can prevent failure then
you aren’t developing your ability to respond

http://www.flickr.com/photos/toms/2323779363/

http://flickr.com/photos/jimmyroq/415506736/
http://flickr.com/photos/jimmyroq/415506736/

http://www.flickr.com/photos/changereality/2349538868/

http://www.flickr.com/photos/flattop341/260207875/
http://www.flickr.com/photos/flattop341/260207875/

Fire drills

http://www.flickr.com/photos/dnorman/2678090600

http://flickr.com/photos/jimmyroq/415506736/
http://flickr.com/photos/jimmyroq/415506736/

4. Avoiding Blame

No fingerpointing

http://www.flickr.com/photos/rocketjim54/2955889085/

http://www.flickr.com/photos/flattop341/260207875/
http://www.flickr.com/photos/flattop341/260207875/

Fingerpointyness

problem!!!
argggh!

time

freaking out,
not talking,
finding fault

blaming,
covering

ass

fix
in

g
th

in
gs

fixed.

whining,
hiding.

hurt egos

figuring it
out

Being productive

problem!!!
argggh!

time

fix
in

g
th

in
gs

fixed.

feeling
guilty

figuring it
out

move
on with

life

Developers: Remember that someone else will
probably get woken up when your code breaks

http://www.flickr.com/photos/alex-s/353218851/

http://flickr.com/photos/jimmyroq/415506736/
http://flickr.com/photos/jimmyroq/415506736/

Ops: provide
constructive
feedback on
current aches
and pains

http://www.flickr.com/photos/allspaw/2819774755/

http://flickr.com/photos/jimmyroq/415506736/
http://flickr.com/photos/jimmyroq/415506736/

1. Automated infrastructure
2. Shared version control
3. One step build and deploy
4. Feature flags
5. Shared metrics
6. IRC and IM robots

1. Respect
2. Trust
3. Healthy attitude about failure
4. Avoiding Blame

This is not easy
You could just carry on shouting at each other…

(Thank you)

